Стилтьеса интеграл - définition. Qu'est-ce que Стилтьеса интеграл
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Стилтьеса интеграл - définition

Лебега интеграл; Интеграл Лебега — Стилтьеса; Интеграл Радона; Суммируемая функция
  • Сверху интегрирование по Риману, снизу — по Лебегу

Стилтьеса интеграл      

обобщение определённого Интеграла, предложенное в 1894 Т. Стилтьесом и состоящее в том, что вместо предела обычных интегральных сумм рассматривается предел сумм , где "интегрирующая функция" φ(x) есть функция с ограниченным изменением (см. Изменение функции). Если φ(x) дифференцируема, то С. и. выражается через обычный интеграл:

,

в предположении, что последний существует.

Лебега интеграл         

одно из наиболее важных обобщений понятия Интеграла, предложенное в 1902 А. Лебегом.

Суммируемая функция         

функция, к которой приложимо введённое А. Лебегом понятие Интеграла, то есть для которой интеграл Лебега, взятый по данному множеству, конечен. Функции эти, называемые также интегрируемыми по Лебегу, необходимо должны быть измеримыми (по Лебегу). Функция с суммируемым квадратом - измеримая функция, квадрат которой есть С. ф.

Wikipédia

Интеграл Лебега

Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.

Все функции, определённые на конечном отрезке числовой прямой и интегрируемые по Риману, являются также интегрируемыми по Лебегу, причём в этом случае оба интеграла равны. Однако существует большой класс функций, определённых на отрезке и интегрируемых по Лебегу, но неинтегрируемых по Риману. Также интеграл Лебега может иметь смысл для функций, заданных на произвольных множествах (интеграл Фреше).

Идея построения интеграла Лебега состоит в том, что вместо разбиения области определения подынтегральной функции на части и составления потом интегральной суммы из значений функции на этих частях, на интервалы разбивают её область значений, а затем суммируют с соответствующими весами меры прообразов этих интервалов.